
Shuffling the Cards: An Information-Theoretic
Defense Against Side Channel Attacks

Abstract—Side-channel attacks traditionally assume a land-
scape where a single process is observed in isolation. However,
this leaves open a weakness in these attacks; if a second,
decoy process is carefully introduced, the adversary may not
know which process they are observing. First we introduce a
formalization of side-channel leakage when decoy processes are
present. Then we propose a novel defense against a broad class
of side-channel attacks which bounds the information leaked
in a side channel, allowing our defense to provably mitigate
leakage, regardless of how the adversary processes their side-
channel observations. To apply our method, we require that the
side-channel leakage follows a particular pattern—small amounts
of information leaked at known intervals. Our modifications to
the algorithm being defended are minimal, only requiring the
insertion of “breakpoints” in the algorithm. Finally, to show
viability, we demonstrate how to adapt our defense to traffic
analysis of streaming videos.

I. INTRODUCTION

When designing cryptographic algorithms, cryptographers
carefully choose the inputs and outputs of their algorithms such
that adversaries cannot discover their secrets, such as crypto-
graphic keys. However, when implementing these algorithms
in the real world, the adversary may gather information from
unexpected channels. For example, consider the following
pseudocode:

1: secret
$←− {0, 1}128

2: for i in 1, . . . , 100 do
3: if secret[i] = 0 then
4: Perform slow operation
5: else if secret[i] = 1 then
6: Perform fast operation
7: end if
8: Print i
9: end for

An adversary who interacts with the above program can’t
learn the value of the secret by looking at the prints directly.
However, if the adversary watches the clock, they could guess
the secret based on the time between print statements. This
is called a timing attack, and this type of attack has been
shown to be viable in practice [4]. Other channels include

Fig. 1. Top: A simplified diagram of the traditional side-channel attack.
Bottom: A simplified diagram of our defense.

electromagnetic radiation [2], cache misses [10], and power
usage [6]. Our example is not contrived: the timing channel
leakage for the above program is very similar to the power
channel leakage of RSA [5].

Now consider the following change to the above program:
initialize two instances, one real and one decoy. Start a random
instance. Whenever a print happens, switch active instances
with some probability. It now becomes much harder for the
adversary to guess the secret. This is the main intuition behind
our defense. We illustrate this idea in figure 1.

Building off this idea, we present a novel, provable defense
against a wide variety of side channel attacks. Our technique
is agnostic to the medium of transmission used in a side
channel attack, and requires assumptions that are applicable
to many side channels. Specifically, our guarantees hold under
the following assumptions:

1) Side-channel information is leaked at discrete inter-
vals (e.g. above, the time between printing)

2) The information leaked over each interval is small
(e.g. above, either the first or second branch is taken;
in other words “first” or “second” is the leakage)

3) No information is leaked over non-targeted side chan-
nels (because fixing a leaky faucet won’t help if your
pipe has burst)

At a high level our method works by taking a program,



breaking up the execution into steps, where the steps have
some predefined explicit leakage, and then running multiple
decoy copies of the same program, with different inputs.
The executions of the programs are then carefully interlaced
using the methods described in sections III, IV, such that
the information leaked overall is reduced as a result of the
interlacing of the leaked bits of information. We can then
subsequently bound the fraction of secret information that will
be leaked.

In order to measure the security of our defence, we take
an information-theoretic approach. We describe the maximum
amount of information the adversary learns from the side
channel, measured by entropy, as defined by Shannon [14]. In
particular, we model our defense as a noisy channel, where the
adversary’s view is perturbed due to the decoy instances. We
first develop a formal model for side-channels under interlaced
processes in section II. Then we present our defenses and their
bounds in sections III, IV. We derive the maximum information
the adversary can learn as the channel capacity of that channel.

We then demonstrate a case study in section V, where
we show how to apply our algorithm to the domain of video
fingerprinting [13], which is a form of side channel attack. We
show how our theoretical model maps neatly onto this domain,
and what the implementation of our system would theoretically
look like.

Our technique does have some limitations. Our tech-
nique incurs the performance overhead of running the de-
coy processes, which cannot be parallelized. For adequate
information-theoretic performance, our technique requires the
execution steps to leak small amounts. This means channels
whose leakage draws from a large set, for example the the
cache miss channel, are not applicable. On the other handle,
channels whose leakage draws from a small set, for example a
power channel leaking the chosen branch, are good candidates
for our technique.

II. FORMALIZATION OF SIDE CHANNELS

We extend the work of Köpf et al. [7] in formalizing side
channel attacks. In Köpf et al.’s model, the side channel is
defined as a function f : K ×M → S where in a traditional
cryptosystem side channel, K is the set of secret keys, M is the
set of messages, and S1 is the set of side channel observations
by the adversary. In a more general sense, one can think of
sk ∈ K as the secret state and msg ∈M as the public state.

We extend this model in two ways. First, we add a notion
of discretization, where the output of the side channel can be
broken into a time-series emission list. Second, we introduce
a notion to formalize the observed output when multiple
instances are allowed to run on the same processor. We call
the schedule by which the instances are ordered an interlace.
A strong notion of discretization allows us to reason about
information-theoretic bounds on interlaces. Discretization and
interlacing act as a layer on top of the model of Köpf et al.
– specifically, any defense that is bounded under Köpf et al.’s
model can only see improved bounds under our model, as we
show towards the end of this section.

1In Köpf et al., O is used. We use O for other purposes in this work, so
we use S here instead.

Discretization can be described by dividing any f(sk,msg)
into a series of discrete observations, which we call emissions.
Formally, let ST be the set of program states and E be the
set of emissions. After discretization, a function f becomes a
list of functions ḡ = (g1, ..., gl), gi : ST → ST × E, where
l = lenf (sk,msg). The input for g1 is st = (sk,msg). The
input for any other gi is the state output from gi−1. We call
each gi an interval.

A ḡ is a valid discretization of f if the concatenation of
all emission outputs from executing g1, ..., gl is identical to the
output of f for any (sk,msg), and ḡ accurately represents the
adversary’s observations.

Now we develop the notion of an interlace. First we will
introduce a few preliminaries. Let S be the set of lists of
emissions. For clarity, let O = S be the set of emissions
seen by the adversary. A ḡ can be described as a function
ĝ : K ×M → S. Let s1, . . . , sm be the side-channel outputs
of m instances of a discretized function ĝ. Let an interlace
schedule r ∈ Rm be a list, with repetition, of elements in
{1, . . . ,m}.

We now describe what it means to “follow a schedule”. Let
I : Sm × R → O follow algorithm 1. I executes a schedule;
in other words, I takes in a description of which order to
run each interval for each instance (a schedule) and finds the
output that would be created if the instances were run in that
sequence. For example a schedule of (1, 2, 2, 1) would “run”
one interval of instance 1, two intervals of instance 2, then one
interval of instance 1.

Algorithm 1 I(s1, . . . , sm, r)

1: for i in 1, . . . , |r| do
2: j = ri
3: s′i ← pop(sj)
4: end for
5: return s′

Let a scheduler be a function that creates a valid schedule;
formally, a scheduler is a function A′ : Sm → I , where each
element i ∈ {1, . . . ,m} appears exactly |si| times for all r =
A′(s1, ..., sm).

We define an interlacing as an algorithm A : Sm → O is
defined as:

A(s1, ..., sm) = I(s1, ..., sm,A′(s1, ..., sm)) (1)

We call any o output by an A an interlace.

In our model, the adversary observes only o ∈ O output
by A. We claim that this is a reasonable assumption because
we assume an observer cannot differentiate between instances
without observing the outputs. This means that we assume that
if there are processes P1 and P2 running on the same machine
and emitting information over the same side channel, an
observer cannot differentiate which process is communicating
over the channel at a given time, without examining the
outputs of the channel. So if P1 and P2 were both emitting
“A” over the same channel, then it would be impossible to
differentiate between the two instances. There are many side
channels where this is true, such as the timing side channel,
network side channel, and power side channel. There are side
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Fig. 2. The model for randomized interlacing. The two unmodified side-
channel outputs are shown in the top left. These outputs are discretized. Our
randomized interlaced algorithm is applied on the discretized outputs. For
each timestep, all instances are executed exactly once in a random order. This
results in the final, observed side-channel; that is, the adversary’s videw is
the bottom-most string. While we show two instances, more instances can be
used for improved security.

channels where this would not necessarily be true, such as the
cache side channel, where one could imagine performing a
FLUSH+RELOAD attack on cache lines belonging to P1, in
order to determine which process would run next.

Our model describes a Markov chain: (K×M)m → Sm →
S. This is more concretely illustrated in figure 2. The original
model describes systems of the form K ×M → S, and thus
by the data processing inequality2, the information in S must
be less than or equal to the information in Sm, which is
the information leaked under the Köpf et al. model. We can
quantify the loss in information in the interlace (the second
transition) as some function ε.

Working backwards, our adversary is trying to infer an
sk ∈ K. In the Köpf et al. model, the adversary observes s ∈ S
which has not been interlaced. In our model, the adversary
observes o ∈ O which is the interlace of s1, . . . , sm, where
for any i, si is determined by (ski,msgi) according to Köpf
et al.’s model. The adversary, in turn, is trying to infer ski
for some i from o. Since sj for j 6= i is independent of si,
recovering ski from o is equivalent to recovering si from o
and recovering ski from si.

III. RANDOMIZED INTERLACING

Here we introduce our primary defense for this paper. Our
defense is similar to shuffling two or more decks of cards
together. Our defense is equivalent to taking m “input” decks
of cards, pulling the top card off each deck, shuffling those
cards together, and adding those cards to an “output” deck.

In randomized interlacing, multiple instances of the same
algorithm are executed in an alternating fashion in the same
execution thread. In each step, the order of execution is
randomized. The randomized interlacing algorithm is defined
in Algorithm 2 and illustrated in figure 2.

2The data processing inequality states that for any Markov chain X →
Y → Z, the following holds: I(Y ;X) ≥ I(Z;X), where I denotes mutual
information. In other words, no processing of Y can yield more information
about X

Algorithm 2 RandInterlacing(sk1,msg1), . . . , (skm,msgm)

1: For every i, initialize instance i with (ski,msgi)
2: while Any instance has more steps to execute do
3: Choose a random permutation of (1, . . . ,m)
4: Execute one step of each instance in the chosen

permutation
5: end while

A. Security

In order to establish security, we need to show that in-
formation is lost at the middle arrows, labelled “Interlace” in
figure 2. We show security by proving the process of applying a
randomized interlace limits the amount of information that can
be transmitted over the side channel. We find that a randomized
interlace limits the information transmission logarithmically
with respect to the number of instances.

Formally, we assume our adversary is given an output
string, o, from a randomized interlace, and their goal is to
recover the input strings, s1, s2, ..., sm of length n. We model
this transformation as a noisy channel, and compute the chan-
nel capacity. This gives an upper bound on the information,
in terms of Shannon entropy, the adversary can learn. In all
cases, log is in base 2.

Our randomized interlacing technique has the following
additional assumptions about the structure of the side-channel:

1) Let Sf be the set of emission sequences from f . The
most important assumption is that ∃c ∀s ∈ Sf , |s| =
c; that is, all emissions sequences are of constant
length.

2) The set of possible emissions for each interval should
be small. More formally, let Sf,i = {si|s ∈ Sf}.
We call Sf,i the “alphabet” of the emission. We say
a = max

i
|Sf,i| is the “alphabet size”. Theorems 1, 2

require a = 2. Conjecture 3 generalizes Theorem 2 to
a ∈ Z+. This is important to minimize the Shannon
entropy of each emission. Note that different intervals
need not share the same alphabet.

We provide two results based on slightly different assump-
tions. We provide intuitions for the results, and leave the proofs
to the appendix. Theorem 1 demonstrates bounds without
assuming independence of the inputs; Theorem 2 assumes
the inputs are independent, giving more favorable bounds. We
generalize Theorem 2 to arbitrary-sized alphabets in conjecture
3.

Figure 3 shows how the leakage per input bit changes as
we increase m. As we can see, diminishing returns quickly set
in.

Theorem 1: Given a randomized interlace o as defined in
algorithm 2, no adversary can recover more than ε-bits of
information from the strings s1, . . . sm, where

ε = n · log(m+ 1) (2)

where HB(·, ·) is the entropy of a binomial distribution and
where (s1, . . . , sm) is drawn from Sm.

We show that over an m length window which is analogous
to a discrete memoryless channel, we can partition the interlace
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Fig. 3. The maximum information leakage per bit of input versus the number
of instances. The blue line shows the leakage per bit under the assumptions
from Theorem 1, and the orange from Theorem 2. The green and blue lines
show the leakage per bit output from conjecture 3, under the assumption of
alphabets of size 3 and 5, respectively. In each case, the leakage per input bit
declines sharply, but diminishing returns set in quickly.

into m + 1 sets of outputs, such that in each partition each
output is equally likely. Then we argue that the most efficient
way to transmit information over such a channel is to have
uniform probability of emitting each symbol at each interval.
One such approach is one input per partition, giving m + 1
inputs that each map to their own distinct partition, for log(m+
1) bits.

Theorem 2: Given a randomized interlace o as defined in
algorithm 2, no adversary can recover more than ε-bits of
information from the strings s1, . . . sm, where

ε = n ·HB(m,
1

2
) (3)

where HB(·, ·) is the entropy of a binomial distribution and
where each si are drawn from S independently.

Our proof again involves computing the channel capacity.
A better intuition for the theorem statement is that an adversary
who learns the original strings also learns information about
the ordering, so the channel capacity must be reduced to
account for this additional information. To find this reduction,
we show that each bit of each string can be described as a
random variable with a constant probability, and we show that
no such probability distribution allows for a channel capacity

exceeding 1
2m

m∑
k=0

(
m
k

) (
m− log

(
m
k

))
bits.

1) Generalizing: In the case where the alphabet of emis-
sions is larger than 2, our model does not describe the leakage.

Conjecture 3: Let all emissions be drawn from an alphabet
of size a. Given a randomized interlace o as defined in
algorithm 2, no adversary can recover more than information
from strings s1, . . . , sm, where

ε = HM

(
m,

(
1

a
, . . . ,

1

a

))
(4)

where HM (m,p) is the entropy of the multinomial distribu-
tion, and where each si is drawn from S independently.

We believe this conjecture to be true because this is
the channel capacity if uniform draws maximize the mutual
information between S and O. This was true for the a = 2
case, so it may be true for the multinomial case.

B. Algorithm correctness

It is worth considering how our technique affects the
correctness of an algorithm. It is necessary that each instance
be sandboxed in such a way that instances do not have side-
effects and interfere with other instances’ execution. The extent
of the sandboxing can be minimized with careful software
design, with a pure function requiring no sandboxing. In the
case where some of the data observed by the adversary is also
needed for the algorithm to function, for example in the case
of video fingerprinting where the adversary observes the com-
munication between the sender and receiver, the receiver must
know the schedule so they can disentangle the decoy instances
from the real instances. In the case where the the algorithm
does not interact with the data observed by the adversary, for
example the power side channel of a cryptography algorithm,
the correctness of the algorithm is ensured with sandboxing
alone.

IV. INVERSE INTERLACING

Here we introduce another interlacing we call inverse in-
terlacing. Inverse interlacing provides complete information-
theoretic security against the targeted side channel attacks, but
requires strict conditions to be met.

We can describe “constant X” defenses – constant time,
constant size, constant power, etc. – using our model by
making some additional assumptions about the function. In
particular, we assume that for any input pair sk, x we can
efficiently identify an input pair sk′, x′ such that for any
emission for the first input pair is the complement of the
corresponding emission for the second input pair. This can be
extended to larger emission spaces by increasing the number of
pairs and choosing additional sk′, x′ pairs, such that at every
emission step, every element in the corresponding emission
space is present exactly once. The interlacing technique is then
applied.3

More formally, inverse interlacing requires the following
assumptions to be true.

1) Let Sf be the set of emission sequences from f . The
most important assumption is that ∃c ∀s ∈ Sf , |s| =
c; that is, all emissions sequences are of constant
length.

2) We assume we can always find an “inverse”
(sk′,msg′) pair to a given (sk,msg); that is, inputs
that output the opposite value at each interval (or
complete the full set, for a > 2). More formally, we
assume there exists some function invf : K ×M →
(K ×M)a−1 such that ∀i ∈ {1, . . . ,m}

f(sk,msg))i ∪ {f(invf (sk,msg)1)i, . . . ,

f(invf (sk,msg)a−1)i} = Sf,i
(5)

Note that this assumption implies m = a.

Inverse interlacing is defined by the following algorithm:

We also present the following, formal bounds on inverse
interlacing:

3Note that, here, the scheduler need not be random. For example, a sorting
based on emitted value is an acceptable output schedule. For simplicity, we
choose to use a random schedule.
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Algorithm 3 InvInterlace(sk1,msg1)

1: (sk2,msg2), . . . , (skm,msgm)← inv(sk1,msg1)
2: return RandInterlace((sk1,msg1), . . . , (skm,msgm))

Theorem 4: Given an inverse interlace o as defined in
algorithm 3, no adversary can recover more than ε-bits of
information from the strings s, where

ε = 0 (6)

Proof: Consider any window, as defined in the proof of
Theorem 1. The adversary’s view is always identical: a random
ordering of each emission in the alphabet, exactly once. As
we discussed previously, these observations are identical from
the adversary’s perspective. Shannon entropy is defined as
H(P ) = −EP [logP ], and since there is only one possible
observation, the output has 0 entropy.

V. CASE STUDY: VIDEO TRAFFIC FINGERPRINTING

In the section, we explore how our defense can be used
to tackle the problem of traffic analysis of video streaming.
In order to approach the problem, we focus on the attack
presented by Schuster et al. [13]. We summarize the attack
in section VI. To model the leakage, we need to model the
side channel under our model. Variable bitrate is ultimately
encoded by dividing the video into segments of constant time
duration, but variable data size. The client requests the a
segment when their current time marker advances sufficiently.
In our simulated case study, we bucket and mitigate the
bitrate observations directly. In a real-world setting, bitrate
is not as easy to bucket, but we can bucket and mitigate a
video segment size channel, thereby indirectly bucketing and
mitigating the bitrate channel. This model naturally lends itself
to discretization, by defining the transmission of one segment
as an discretization interval.

To limit the alphabet size, the video segments sizes can
be bucketed, using a technique similar to Köpf et al., 2009
[8] to reduce the output alphabet for each interval. The size
of the alphabet provides a trade-off between performance and
security. Conjecture 3, if correct, can be used to determine the
impact of larger alphabets on security. In a real-world setting,
videos should also be bucketed by total duration so-as not to
leak video duration.

Note that under our model, it is always possible to obtain
perfect true negative rate – that is, an adversary can always
rule out if you watched a video. However, as long as the set
the video is drawn from is sufficiently large relative to the
leakage, any classifier would have a high false positive rate.

As we’ve mentioned, side channel attacks that attempt to
determine which video is currently being streamed typically
work by attempting to exploit variable bitrates. For our simu-
lation, we’ll break up the stream into intervals of fixed length,
and then bucket the bitrates.

In figure 4, we can see an example of a video with a
variable bitrate, before and after rounding up to our fixed al-
phabet. We selected an alphabet of {100000, 175000, 275000}
Bits/second, and rounded up the bitrate of each interval of
one second, to the next term in the alphabet. Next, we took

Fig. 4. An example of the bitrate of an arbitrarily selected YouTube video,
before and after rounding up the bitrate

Fig. 5. An example of our complete interlace of two selected YouTube videos

a second video, performed the same operation with the same
alphabet. We then follow our first algorithm, by computing an
interlace schedule. This is just a string of randomly generated
bits equal to the number of intervals in both videos. We then it-
erate through the schedule and both videos, constructing a new
streaming schedule. We follow our algorithm by appending the
corresponding intervals of each video in the order determined
by our schedule, constructing a final interlace, that is visible
in figure 5.

While we can see the traffic of our original video in
figure 5, we also see that a significant amount of decoy data
has also been injected. In the high bitrate section towards the
beginning, we see the presence of both low and high bitrates.
Towards the end, where the bitrate is lower, we see new spikes.
The introduced highs and lows along with the uncertainty of
which observation belongs to which video will lead to false
positives. The expected number of false positives will depend
on the set of possible videos, their likelihoods, the number
of decoy instances, the chosen alphabet, and the number of
emissions. As with all side-channel attacks, we are looking at
a perfect view—a real world adversary will experience a noisy
view.
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VI. RELATED WORK

To establish provability in any field, an accurate, formal
model of the questions asked is needed. For side-channel
attacks, one such formal model of side-channel attacks was in-
troduced by Köpf et al., 2007 [7]. Their model describes side-
channel attacks both adaptive and non-adaptive adversarial
strategies. Köpf et al., 2009 [8] demonstrates the power of such
methods by introducing a straightforward defense mechanism
and showing how a defender can configure a performance-
security trade-off using their model.

Heuristic defenses face an increasing threat as machine
learning becomes more capable of detecting weaknesses. Siri-
nam et al. [16] presented a deep learning approach to website
fingerprinting against the Tor network. Under some conditions,
they were able to obtain an accuracy approaching 100%.
Askarov et al. [3] introduced a class of blackbox, composable
mitigators against timing channels. Askarov et al.’s analysis
also uses information theory to provide provable bounds on
side channel leakage.

The increasing awareness of side channel attacks has
lead to the introduction of defenses that minimize the work
on the cryptographer and the developer. Shelton et al. [15]
presented a code rewrite engine that automatically simulates
the power side-channel and rewrites segments that appear to
leak information.

Video fingerprinting is an example of a side channel attack
that is very difficult to mitigate in practice without severe
performance penalties. Recent work [12] has shown that it is
possible to determine which specific video on Netflix is being
streamed, even through an encrypted connection. This poses
significant privacy implications for video streaming sites going
forward, which are nontrivial to solve. In many previous side
channel defenses for other domains, constant time operations
are enforced, resulting in effectively zero information flow.
This is used in libraries such as OpenSSL [1]. These techniques
don’t generalize well to defenses for video fingerprinting,
as the performance overhead of having a constant streaming
bitrate is too large.

Past work such as Schuster et al. [13] described a side
channel attack against encrypted video streams. In their attack,
the adversary watches the changes in bitrate and compares the
pattern against an established database of video bitrate patterns.
The video is then assumed to be the video in the database
with the most similar bitrate pattern. This is effective because
modern video streaming divides videos into constant time
segments, and only transmits the segment when the segment
is temporally close to the current video time.

The most obvious defense to such an attack is to make
bitrate constant. This can be accomplished by fixing the bitrate
to a set value [11], or by injecting random quantities of
noise to hide bitrate [17]. A method known as dependent link
padding was introduced to compromise between the privacy
of constant bitrates with the change in bitrate demand of real
networks [19].

There are several defenses that could be applicable to this
and similar attacks. One such defense was proposed by Zhang
et al., 2013 [20] and protects encrypted channels against side-
channel attacks by multiplexing multiple channels through a

single one. Another related defense was proposed by Wang
et al. [18] which injects enough fictitious data to provide a
believable “cover story” for any access. While their technique
is targeted towards static content, it could be adapted for video
streaming. A more recent paper, Zhang et al., 2019 [21] targets
video streaming directly. They provide two mechanisms for
defending against attacks. The first is to inject enough traffic
such that the input the attacker finds is an adversarial example
to their machine learning algorithm. The second defense is
to introduce differential privacy into streaming bitrate, such
that videos with similar bitrate profiles are statistically indis-
tinguishable.

VII. LIMITATIONS

Our defense has limitations that need to be carefully
considered before implementation. First and foremost, the
system must, by design, have an overhead of 2x or more,
scaling linearly with the number of decoy instances. This can
be mitigated if the alternate instances can be put to use (e.g., if
multiple videos are being streamed simultaneously), but that’s
not always possible.

There are some cases where the adversary can obtain
enough entropy to discover the key, from an information-
theoretic perspective. If the entropy of the secret is low relative
to the size of the output observed, for example if the key has
128 bits and the adversary observes 300 bits per instance from
the side channel, then the adversary may still gather enough
entropy to recover the secret. Furthermore, if the adversary is
allowed multiple observations of the same secret’s interlaced
side channel output with different public inputs or different
cover instances, then the adversary may be able to gather
enough entropy to learn the secret. This is not the case if
the side channel output is independent of the message and the
cover instances chosen depend on the secret alone.

We leave the computational hardness of disentangling
interlaces an open problem. If it is “easy” to disentangle
interlaces given sufficient information, then this would leak the
original side-channel output, allowing the adversary to recover
the scheme using a traditional side-channel attack. For this
reason, it is important to take care when using the same secret
multiple times.

Finally, our algorithm cannot defend against an adversary
that manages to find an unanticipated source of information,
for example an undefended, alternate channel or a more fine-
grained observation of the targeted channel. Additionally, the
scheduling algorithm and the context switcher might be vul-
nerable to side channel attacks, so care needs to be taken when
implementing this system to avoid directly leaking information
about which instance is running.

VIII. FUTURE WORK

In a followup work, we intend to propose a related tech-
nique we call “single shuffling”, where the lock-step restriction
is removed from the randomized interlacing. Crucially, this
requires assuming all intervals share an alphabet. Additionally,
it is an open problem to compute information-theoretic bounds
on the leakage, although we expect them to be significantly
better. We additionally intend to perform a full study of
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how effective our methods are in practice—both in terms of
information leaked and performance.

An open question is how the security of our techniques
changes over repeated rounds. It seems feasible that even if
the full information of the key is leaked over multiple rounds,
there may be additional computational hardness protections.
Furthermore, it has yet to be determined how to compose
the information leaked over multiple, non-identical rounds.
It seems likely that there may be mutual information leaked
between the rounds. An information theoretic framework for
quantifying the mutual leakage between rounds would be
important for many cryptographic applications.

Another open question is how our defense scales in terms
of efficiency to other side channel defenses. We expect our
“single shuffling” technique will greatly decrease the number
of instances required. However, at a minimum, we will always
need two instances. If we can develop a system that always
interlaces real instances, rather than creating random, cover
instances, we can further reduce the cost of our method.
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APPENDIX

A. Notation guide

Symbol Meaning
m The number of instances for an interlace
n The length of the interlace
a The size of the emission alphabet
sk A secret input
msg A public input
s The output of a side-channel
o The output of an interlace
e An emission, or output of a single interval

of a discretized side channel
st A program state
K The space of secret inputs
M The space of public inputs
S The space of side-channel outputs
O The space of interlace outputs
E The space of emissions
ST The space of program states
f The side-channel of an algorithm, under the

Köpf et al. model
ḡ A discretized side-channel. Specifically, a

list of emission functions
gi The emission function at interval i for a

discretized side channel
A An interlace
A′ A scheduler for an interlace
I The schedule executor

B. Proof of theorem 1

Consider the observed side channel output o from a
randomized interlace. Choose some i ∈ (1, . . . , n). Let
wi =

(
om(i−1)+1, ..., omi

)
. Observe that wi depends only on

bi, s
1
i , s

2
i , ..., s

m
i . We can model the relationship between wi

and s1i , s
2
i , ..., s

m
i as a discrete memoryless channel. Specifi-

cally, such a channel is defined by an input alphabet X , an
output alphabet Y , and a transition probability matrix p(y|x)
for x ∈ X , y ∈ Y .

Let X = Y = {0, 1}m. Given some x, let k = count(1, x).
Then
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p(y|x) =

{ (
m
k

)−1
count(1, y) = count(1, x)

0 otherwise

We can see that the channel models the interleave since x
can only transition to y if they have the same number of 1s,
the probability of transition to each y′ with the same number
of 1s is uniform, and there are

(
m
k

)
ways to arrange k 1s across

m slots.

To find the maximum information the adversary can re-
cover from one window, we need only find the maximum in-
formation transmittable over the channel, which is it’s channel
capacity. This is defined by:

C = max
p(X )

I(X ;Y)

We can express this as:

C = max
p(X )

∑
x,y

p(x)p(y|x) log
p(y|x)

p(y)

We can partition this sum into different values for count(1, x).
Note that if count(1, x) 6= count(1, y), then p(y|x) = 0, and
hence so the corresponding term is 0. Hence, the channel
capacity expression reduces to:

C = max
p(X )

m∑
k=0

∑
x,y

count(1,x)=k
count(1,y)=k

p(x)p(y|x) log
p(y|x)

p(y)

We can see that p(y) =
∑
x
p(x, y) =

∑
x,y

count(1,x)=k

p(x)
(
m
k

)−1
,

where k = count(1, y), since the probability of finding an x
that could transition to y is

∑
x

count(1,x)=k

p(x) and the probability

of transitioning is
(
m
k

)−1
. Hence,

C = max
p(X )

m∑
k=0

∑
x,y

count(1,x)=k

p(x)

(
m

k

)−1
log

(
m
k

)−1∑
x

count(1,x)=k

p(x)
(
m
k

)−1
= max

p(X )

m∑
k=0

(
m

k

)(
m

k

)−1 ∑
x

count(1,x)=k

−p(x) log
∑
x

count(1,x)=k

p(x)

= max
p(X )
−

m∑
k=0

log

 ∑
x

count(1,x)=k

p(x)

 ∑
x

count(1,x)=k

p(x)

Let Z be a random variable that draws with some probability
from the set {z0, z1, ...zm}, such that

p(zk) =
∑
x

count(1,x)=k

p(x)

Because of our partitioning scheme,
m∑

k=0

p(zk) = 1 and 0 ≤

p(zk) ≤ 0, Z constitutes a random variable. Then, with a

change of variables, we have:

C = max
p(X )

m∑
k=0

p(zk) log p(zk)

= max
p(X )

H(Z)

Where H(Z) is the Shannon entropy of the random variable Z.
We know from information theory that this value is maximized
when Z is uniformly distributed. Since p(Z) depends on p(X)
and H(Z) does not depend on X aside from in that it depends
on Z, we can say that

max
p(X )

H(Z) = max
p(Z)

H(Z)

≤ log(m+ 1)

Where the final inequality follows from the fact that the
support of Z is over m+ 1 points.

We then need to apply this to each possible value of i.
We sum the values for each window, giving us a total channel
capacity for the entire string lengths of n · log(m+ 1).

C. Proof of theorem 2

Proof: Because each string is drawn independently, then if
we examine the set of all possible strings, S, then for some
position j, we can determine the probability that position has
the value 1, which we will denote q. This can be done by
finding the fraction of strings that have 1 at position j. It then
holds that for that position, the probability of seeing a 0 is
1− q. Because each string is drawn independently, the values
sij are mutually independent and are each 1 with probability
q.

This observation allows us to place a restriction on the
distribution of probabilities when computing the channel ca-
pacity: p(x) = qcount(1,x) (1− q)|x|−count(1,x) , 0 ≤ q ≤ 1.
Then, maximizing C with respect to p(X ) is the same as
maximizing C with respect to q.

C = max
p(X )

∑
x,y

p(x)p(y|x) log
p(y|x)

p(y)

= max
q

∑
x,y

p(x)p(y|x) log
p(y|x)

p(y)

We can use some of the work from the proof of Theorem 1
to obtain the following expression for the capacity after
substituting p(x) = qk (1− q)m−k:

C = max
q
−

m∑
k=0

log

 ∑
x

count(1,x)=k

p(x)

 ∑
x

count(1,x)=k

p(x)

= max
q
−

m∑
k=0

log

 ∑
x

count(1,x)=k

qk(1− q)m−k

 ∑
x

count(1,x)=k

qk(1− q)m−k

= max
q
−

m∑
k=0

log

((
m

k

)
qk(1− q)m−k

)(
m

k

)
qk(1− q)m−k

Where the final expression is simply the entropy of the
binomial distribution, HB(m, q), which is known from prior
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work [9] to be maximal at q = 1
2 . As before, summing over

all n positions, we obtain C = n ·HB(m, 12 ) which completes
the proof.
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