
Incentive-Driven Verifiable Random Beacons
Author(s) Removed For Review

Abstract—Random beacons—sources of open, public
randomness—play a critical role in many protocols. Their uses
range from proofs of earliest possible creation date to secure
multiparty computation to lottery systems. In this paper we
describe a random beacon that always requires misbehavior
by a configurable number of parties to meaningfully affect
the outcome. Our design introduces an economic security
parameter, such that a colluding set of parties must forgo at
least that much money in order to violate security requirements.
As long as the adversary’s gain from cheating is less than the
economic security parameter, we assume the adversary will not
try to cheat. Participants in the protocol are assumed to be
willing to accept bribes from the adversary, but the economic
security parameter ensures that bribery-based strategies are too
expensive to be viable for the adversary. Our random beacon is
designed such that any party can trust the output of the random
beacon, even if they did not participate in the computation of
the output, as long as they trust the public keys and specific
universal constants. In order to further discourage dishonest
behavior, every critical step of our protocol is third-party
auditable and backed by incentives with a floor in cost that
make honest behavior more profitable than dishonest behavior.
Each step of our beacon is verified by a smart contract to
provide monetary reward or penalty, as appropriate, to protocol
participants, ensuring honesty is the best fiscal policy.

I. INTRODUCTION

Random beacons are sources of public randomness: at a pre-
specified interval, they publish pseudorandom numbers that are
globally visible. Security requires that the value of a beacon
not be predictable in advance, nor meaningfully controllable
by an adversary, assuming that security parameters are suitably
chosen. Random beacons are useful in a variety of applica-
tions; perhaps the largest class of problems random beacons
can solve is making making decisions where consensus on a
common, randomly-chosen string is needed, but a multiparty
coin-flipping protocol is not sufficiently trusted or feasible.
Examples of such situations are performing lottery draws,
where there are too many parties for all of them to participate
in a coin-flipping protocol, and determining common reference
strings, where new parties may wish to join at a later date
and may not trust the result of a coin-flipping protocol. Many
proposals for random beacons exist, so we establish a random
beacon whose security is incentive-based.

In this paper, we propose a new design for a random beacon
we call an “Incentive-Driven Verifiable Random Beacon”
(IVRB), which we construct by building a post-processing
layer for a previous random beacon design. This new de-
sign allows us to avoid any single points of failure in the

beacon, meaning that no single compromise can lead to any
of the attacks in our threat model, as discussed in section
III. Furthermore, while our protocol could be performed in
a peer-to-peer setting, we demonstrate how a smart contract
over a blockchain can be used to enforce honest behavior. By
implementing our protocol over a smart contract, we show
that when the the adversary’s motivations and participants’
incentives are properly modeled, honest behavior is more
profitable than dishonest behavior.

Our design relies on smart contracts, which are supported by
many cryptocurrency systems. Parties to our protocol commit
to future behavior by putting down a deposit that they will
recoup, plus a small reward, if they behave as promised; but
the deposit will be lost if a party violates its commitment. If
the deposit is large enough, a party has a strong incentive to
behave as promised, unless the adversary offers a bribe larger
than the deposit to induce misbehavior. We will then argue that
the total cost of bribes by the adversary must exceed a security
parameter. We explore the use of smart contracts further in
section V-B.

II. RELATED WORK

Random beacons were first introduced by NIST in 2011 for
applications requiring “public, time-bound, and authenticated”
random numbers. The most obvious applications are proof
of earliest possible creation date and resolution of lotteries.
NIST also proposed more sophisticated applications such as
Unpredicatable Sampling, Secure Authentication, and Secure
Multiparty Computation[1]. This simple beacon model re-
quires complete trust in the honesty of the random beacon
provider. To combat this, Clark et al. introduced a method to
to draw on financial market data as a randomness source[2].
However, it was unclear if this source could be manipulated,
and financial data is sometimes hard to access[3]. In response,
Bonneau et al. proposed the use of the Bitcoin blockchain as
the source of unpredictable data. This imposes an expected
cost to manipulate the data source, since manipulation would
require a party to forgo a Bitcoin mining reward[4]. However,
Bonneau’s beacon is still subject to manipulation by an ad-
versary who somehow convinces miners to forgo collecting
rewards when doing so benefits the adversary. Pierrot and
Wesolowski demonstrated that large resources are not required
for this type of attack[5]. Bentov, Gabizon, and Zuckerman
examine the incentives more closely in their work[6].

Some recent approaches have relied on verifiable delay
functions (VDFs). These schemes function similarly to Bon-
neau’s beacon, except the final result is determined by a
VDF, making it infeasible to compute the beacon output
at the time of block publication[7][8]. These mitigate block
withholding attacks, but require a large latency. The VDFs
also require continuous use of computational resources, and
they make assumptions about limitations on the adversary’s
computational resources that may not hold true in practice.

Syta et al. published two related methods for generating
public randomness, dubbed RandHerd and RandHound[9].
Both methods use a commit-then-reveal approach, thresholded
by Shamir’s secret sharing, and verified by Lagrange interpo-
lation, but differ in how they distribute the derivation of the
randomness result. The first uses a leader who coordinates
the results, and can provide a transcript as proof of validity
to a third party. The second breaks generation into a tree-
like structure, with a randomly assigned leader[9]. Their
final protocol is fairly efficient, but leaves some room for
performance improvements. It also doesn’t guarantee com-
plete unbiasability, since a dishonest leader can forfeit their
leadership to withhold an undesired outcome. Their protocol
also requires that at least 2/3 of nodes be honest, and doesn’t
provide much tunability based on threat model.

The most closely related approach to ours, from a crypto-
graphic construction standpoint, is DFINITY’s construction,
which, while similar, was developed independently. DFINITY
is a blockchain-based protocol for running verified compu-
tations on top of existing blockchain software. To acheive
consensus, DFINITY has created a blockchain based random
beacon that uses a thresholded scheme called BLS which was
introduced by Boneh, Lynn, and Shacham[10][11]. However,
DFINITY’s work does not examine the incentive structures
of their scheme. Our proposal includes a robust incentive
structure, a key change scheme, and extensions to examine
the value of a random beacon as a non-public good. A second,
more minor, distinction is the source of the round input. Both
protocols require an input for each round. For DFINITY, the
input comes from the previous round’s beacon output, whereas
ours comes from a Bonneau beacon, making our approach
more resistant to prediction attacks, which we define below in
section III.

Another similar randomness generation approach was that
of Algorand. In Algorand, a secret key is selected well in
advance, and a single user computes the randomness for each
round in a verifiable manner. In order to manipulate the
result, many sequential such users would need to collude[12].
Algorand requires a trusted setup to start the randomness
generation, and Algorand does not handle aborts in a way
that avoids bias[11].

A. Verifiable Random Functions

Verifiable random functions (VRF) are a cryptographic
primitive that act as a pseudorandom function (PRF) with a
proof of correctness. Informally, a VRF can be seen as a PRF
that provides a commitment to its secret key, and on every

output it provides a proof that its output is the unique value
that is consistent with that commitment. Before the output is
published, a party without knowledge of the secret key is not
able to gain any information about the output.

We define VRFs formally, closely following Dodis[13]. A
VRF is a quadruple of algorithms that run in poly(k) time:

1) A generator algorithm SK,PK = Gen(1k)
2) An evaluator algorithm v = fSK(x), f : {0, 1}a(k) →
{0, 1}b(k)

3) A prover algorithm π = ΠSK(x)
4) A verifier algorithm V (PK, x, v, π) that outputs “yes”

or “no”
where v is the output, π is the proof, and x is the input on
which to evaluate the function. VRFs also must satisfy the
following properties:

1) Soundness: there exist no values (PK, x, y1, y2, π1, π2),
y1 6= y2 such that V (PK, x, y1, π1) =
V (PK, x, y2, π2) = yes

2) Completeness: If SK,PK = Gen(1k), v =
fSK(x), π = ΠSK(x), then V (PK, x, v, π) = yes

3) Pseudorandomness: Let rand(S) output a random
element s ∈ S. For any PPT algorithm A = (A1, A2)
given an oracle to f,Π who does not query x, the
following experiment fails with probability at most
1
2 + negl(k)

(PK,SK)← Gen(1k)

(x, st)← A
fSK(·),ΠSK(·)
1 (PK)

y0 ← fSK(x); y1 ← rand
(
{0, 1}b(k)

)
b← rand ({0, 1})

b′ ← A
Π(·)f(·)
2 (yb, st)

The experiment succeeds if b = b′

This ability to provide an psuedorandom output and a
corresponding proof of correctness make VRFs an appealing
choice for random beacons. An input can be chosen in a public
manner such that even if the adversary completely controls the
input, they will not be able to predict any information about
the output, and hence will be unable to manipulate the output.
Because a corresponding proof is provided, third parties will
believe the output was correctly computed, as long as they
trust the public keys were distributed correctly.

Our work aims to produce a random beacon that is verifiable
to third parties who were not involved in the beacon, is
robust to single points of failure, and has an unbounded
and adjustable cost to predict or manipulate. To accomplish
this, we extend the economic incentives of Bonneau et al.’s
approach[4] on top of the thresholded verifiable randomness
generation of Hanke et al.’s approach[11], and we add two
extensions that allow random beacons to be used as non-
public goods. We introduce an adjustable minimum cost of
misbehavior that exceeds the anticipated maximum benefit to

the adversary of that misbehavior. We also aim to improve the
robustness of the system to bias by removing all single points
of failure. We reduce the load and trust on our systems by
offloading the distribution and verification to the blockchain.
We approach this by using a weak verifiable random function
modified to require a threshold of participants, along with
mandatory deposits and fees to provide adjustable incentives
for the participants.

III. THREAT MODEL

In order to analyze beacon designs, we first need to establish
a threat model. In our threat model, the parties in our protocol
and our adversary are economically motivated. We imagine
that for every round of our protocol, the adversary considers
some outputs of the beacon to be favorable and the rest to be
unfavorable.

We assume that we know an upper bound V on the monetary
value (or utility) that the adversary places on achieving a
favorable output rather than an unfavorable one, in each round
of the protocol. This V acts as a security parameter in our
model. By assumption, an adversary is unwilling to pay more
than V to gain an advantage on a single random beacon output.
We further assume that adversarial gain over multiple rounds
follows the triangle inequality. In other words, if an adversary
stands to gain V1 from manipulating round a and V2 from
manipulating round b, then the adversary stands to gain at
most V1 + V2 from manipulating rounds a and b together.

We assume our adversary is computationally bounded; that
is, our adversary can only run algorithms that complete in
probabilistic polynomial time (PPT). We denote the computa-
tional security parameter k. We assume that if the adversary
promises to pay bribes to other parties conditional on their
behavior, they will trust that the adversary will pay if they
behave as requested.

We show security by showing that any computationally
feasible strategy taken by the adversary to defeat the security
properties of the random beacon will reduce the adversary’s
expected utility by more than V .

Because our primary goal is to remove bias in outputs,
we prioritize integrity over availability. Therefore we do not
require that the protocol be resistant to denial of service. We do
require, however, that any denial of service attack is oblivious,
in the sense that no adversary can deny service in a way that
affects the ratio of expected favorable to expected unfavorable
outputs. We assume that whenever the output of the protocol
is suppressed, observers will always notice within a short time
period, since beacon outputs are scheduled in advance. If the
protocol fails to complete in the time required, we denote the
output with the ⊥ symbol. Users of the protocol will also treat
syntactically invalid outputs as ⊥.

Each round of the protocol defines two times tcutoff < tpublish.
Honest participants will publish the results of their shares of
the protocol between these two times.

We consider two primary types of attacks: prediction
attacks and biasing attacks. We formalize security properties
against these attacks in section VI-A.

VRF1

VRF2

VRFn

...

Smart
contract

Blockchain
input data

Beacon
Output

At least t values

Fig. 1. An overview of our random beacon protocol. The “blockchain input
data” would typically be Bonneau et al.’s random beacon. Each V RFi is
executed by an individual participant. Values are collected from at least t
such VRFs, which a smart contract verifies and assembles into the beacon
output.

In a prediction attack the adversary recovers useful, non-
public information about the output before the cutoff time
tcutoff.

In a biasing attack the adversary biases the distribution
of outputs to increase the ratio of the probability of a favor-
able output to the probability of an unfavorable output. The
distribution of outputs may include ⊥.

For simplicity, our incentive model does not include com-
promises of participants that occur due to intrusions. In a
real world setting, the costs can be adjusted according to the
security model. To make the adjustments, compromises can be
modelled as 0 cost bribes. The incentive model would need to
be adjusted accordingly, which we discuss in section V-A.

IV. PROTOCOL

At its simplest, our protocol involves taking some univer-
sally available input x and passing it to a VRF FSK(x) with
a proof ΠSK(x), and using FSK(x) as the beacon output. We
refine the details of this protocol to provide additional security
guarantees.

To remove the single point of failure of a single ma-
chine computing FSK , we distribute the key SK into n key
shares, SKis, where some threshold t < n of output shares,
FSKi

(x)s, is sufficient to reconstruct FSK(x). Each SKi is
distributed to a different server we call “participants.”

In order to create an incentive to publish their output share,
we require every participant i put down a deposit d though a
smart contract prior to engaging in the protocol. Immediately
after the valid deposit is posted, a fee f is paid to a smart
contract by a third party we refer to as the “coordinator”. The
smart contract will only pay a participant who provides an
input (v, π) such that V (PK, x, v, π) = yes.

Since our beacon input x needs to be easily accessible and
verifiable from the blockchain, we use the blockchain random
beacon described by Bonneau et al.[4]. The input needs to be
accessible from the smart contract. In this way, our protocol
is a post-processing of Bonneau et al.’s random beacon to
improve the security properties. The protocol as described to
this point is illustrated in figure 1.

While our protocol does not rely on a trusted third party
for security, the coordinator is entrusted with ensuring the
economic viability of our protocol. The coordinator’s roles
involve creating appropriate smart contract(s) and posting fees
to pay the participants. Should the coordinator fail to perform
their duties, participants should be permitted to recover their
deposits without posting the output to their evaluation of FSKi

.

A. Choice of VRF

A number of VRF constructions have been proposed, most
of which rely on the construction of a unique signature,
also known as a verifiable unpredictable function (VUF),
that is then transformed to a VRF through a standard, slow
transformation. The original VRF construction of Micali de-
pends on the RSA assumption[14]. In contrast, most other
VRFs use variants of the Diffie-Hellman assumption, which
often improved performance. Dodis and Lysyanskaya both
propose VRFs that require multiple dependent rounds of
execution[13][15]. For our application, having multiple rounds
makes enforcing and fulfilling the smart contracts difficult,
since failures on earlier rounds can lead to good actors not
being paid, and success on earlier rounds can lead to bad
actors recovering part of their deposit. Brakerski et al. propose
a variant of a VRF called a weak VRF that provides marginally
weaker soundness and completeness than a standard VRF.
While weak VRFs remain secure to adversarially chosen
keys, the pseudorandomness property only holds for random
inputs[16]. The weak VRF is defined with the same quadruple
of functions, but has the following properties:

1) Relaxed Soundness: For all but a 2−k fraction
of x values, and for all (PK, y1, y2, π1, π2)
such that y1 6= y2 it holds that
Pr [V (PK, x, y1, π1) = V (PK, x, y2, π2) = yes]
≤ negl(k).

2) Relaxed completeness: If SK,PK = Gen(1k), v =
fSK(x), π = ΠSK(x), then V (PK, x, v, π) = yes,
except with probability less than negl(k)

3) Weak pseudorandomness: Let rand(S) output a ran-
dom element s ∈ S. For any PPT algorithm A given
an oracle to f,Π who does not query x, the following
experiment fails with probability at most 1

2 + negl(k)

(PK,SK)← Gen(1k)

x← rand
(
{0, 1}a(k)

)
y0 ← fSK(x); y1 ← rand

(
{0, 1}b(k)

)
b← rand ({0, 1})

b′ ← AfSK(·),ΠSK(·)(PK, x, yb)

The experiment succeeds if b = b′ and the inputs to the
oracle queries were chosen randomly.

In the case of a weak VUF, instead of weak pseudoran-
domness we have weak unpredictability, defined as follows:

Weak unpredictability: Let rand(S) output a random
element s ∈ S. For any PPT algorithm A given an oracle
to f,Π who does not query x, the following experiment fails
with probability at most 1

2 + negl(k)

(PK,SK)← Gen(1k)

x← rand
(
{0, 1}a(k)

)
y ← fSK(x)

y′ ← AfSK(·),ΠSK(·)(x)

The experiment succeeds if y = y′ and the inputs to the oracle
queries were chosen randomly.

We construct our beacon using the construction of a weak
VRF from Brakerski et al., because it does not require multiple
sequential steps to compute in a distributed manner, and
because we found it to be the most straightforward to modify.
To address the requirement of random inputs and to facilitate
the use smart contracts to validate the outputs, the Bonneau
et al. beacon is a natural choice. We demonstrate the security
of this approach in section VI-B.

We slightly modify Brakerski et al.’s construction using
Dodis’s distributed VUF construction to provide a (t,n)-
threshold distributed VUF. To do this, we begin with the
Brakerski VUF construction. Ahead of generation, public
parameters G1,G2,GT , g are chosen. G1,G2,GT are groups
of prime order, such that there is a known bilinear mapping
e : G1 × G2 → GT , and g ∈ G1 is a generator of G1. On
Gen, the secret key a ∈ G is chosen, and the corresponding
public key ga is published. The unique signature function is
Fa(x) = ra where r = hashG2

(x), r ∈ G2, where x is the
public input. The signature is verified by ensuring (g, r, ra, ga)
forms a valid decisional Diffie-Hellman (DDH) tuple.1

We modify this VUF by distributing a with Shamir’s
secret sharing. A dealer chooses a polynomial pt(x), where
pt(0) = a. The dealer then secretly sends ai = pt(i) to
participant i, and publishes public key gai . If the dealer is not
trusted, the keys can be immediately refreshed as described
in section IV-B. Each participant now has a secret key for
an independent Brakerski weak VUF, but when at least t
participants’ outputs are known, the value ra can be computed
by Lagrange interpolation in the exponent of the rai values.
Likewise, individual VUF output can be verified by ensuring
(g, r, rai , gai) is a valid DDH tuple, and the global VUF output
can be verified by ensuring (g, r, ra, ga) is a valid DDH tuple.
This modification uses the same method as the conversion
Dodis proposes to his VRF to support thresholding[13].

To convert our VUF to a VRF, we have two options. We
can use the transformation described by Micali, which requires
computing multiple parallel VUF outputs[14]. However, this
would increase the communication complexity and data stored
on the blockchain, which is not ideal. It would also increase

1Under a bilinear mapping, DDH is easy: to check c = a · b in
(g, ga, gb, gc), we check if e(g, gc) = e(ga, gb) =⇒ e(g, g)c =
e(g, g)ab =⇒ c = a · b.

the computation time required by the smart contract, since
all outputs would need to be verified. In practice, we rely
on a hash as an approximation of a random oracle, and let
FSK(x) = hash (ΠSK (x)).

The soundness and the unpredictability properties of VRF
outputs make manipulation attacks against our protocol very
difficult. We show this more formally in section VI.

B. Key refreshing

To help mitigate leakage of secret keys, VRF keys can be
refreshed. A party c, the “leader”, picks some random value
bc and chooses some random polynomial pc(x) of degree t−1
such that pc(0) = bc. c publishes gbc . For each participant i, c
secretly sends participant i the value pc(i) and publishes gpc(i).
Observers confirm the Lagrange interpolation of the gpc(i)s is
gbc . If failure is recorded, the changes from this polynomial
must be discarded, and the cause of failure can be investigated
offline. In the case of a failure, a replacement leader can be
chosen to execute the key refresh protocol.

Several such leaders can perform this protocol simulta-
neously. After all leaders have submitted, each participant
computes its new secret

a′i = ai +
∑
c

pc(i)

All observers compute the new participant commitments

gai
′

= gai ·
∏
c

gpc(i)

and the new VRF commitment ga
′

as the Lagrange interpola-
tion in the exponent of t values of gai

′
.

To ensure integrity, each participant i locally computes its
public key from its secret key, and verifies that this matches
the published public key. Using Lagrange interpolation on at
least t public keys that do not include its own, the participant
recovers gpc(x), and recovers an interpolated value for gpc(i),
and verifies that this matches the published public key. If either
of these checks fail, the participant indicates a protocol failure
and the new keys from c must be discarded.

The outputs after a key change cannot be predicted as long
as any one party c is honest. If C parties contribute to the
refreshing, then the overall communication complexity will
be O(Cn). It may be desirable to only perform refreshing
every O(n) rounds to reduce the cost down to an amortized
O(C) per round, or to perform the key refresh protocol with a
constant number of parties, giving communication complexity
of O(n) per round.

We recommend that the submitting parties be the par-
ticipants, since the participants already play a role in the
protocol, and it is reasonable to assume at least one of the
participants will be honest. Strictly speaking, however, using
the participants as the submitting parties is not necessary for
security; it is only necessary that one submitting party be
honest.

V. INCENTIVES

In this section we develop an incentive system to enforce
honest behavior. These incentives creates a cost to various
modes of failure for our beacon. These incentives are mod-
eled such that they can defend against adversaries that are
arbitrarily well funded, albeit with linearly increasing costs
and practical limitations.

Broadly speaking, we want to reward compliance with the
protocol and punish misbehavior. Our goals with the incentive
structure can be broken into two behaviors we target:

1) Ensure participants produce the correct output at an
appropriate time.

2) Ensure participants do not leak outputs for unpublished
inputs, where an unpublished input is any input that was
not used for a previous beacon output and is not in use
for the current beacon output.

In section V-A, we discuss how we structure our incentives.
In section V-B, we discuss how we enforce our incentive
structure through a smart contract.

A. Incentive structure

Let a V -adversary be an adversary who is willing to forfeit
monetary value of at most V to predict or bias the output of
the random beacon.

As we will show in section VI-B, since we use a (t, n)
threshold system, an adversary will need to bribe n − t + 1
participants to affect the protocol’s output. Then bmax ≤
V/(n − t + 1) is the maximum bribe the adversary will be
willing to pay each of these participants. We can establish
a minimum bribe value bmin, that a participant will insist on
receiving, by enforcing a loss of −bmin for any participant
who misbehaves. A trivial solution would be to provide a
payout of bmin to any participant who provides an output that
passes verification. However, this is likely infeasible, since
these payouts would likely have to be quite large. Instead, we
require each participant to pay a deposit d to participate, and
on publishing their verifiable output the participant recovers
their deposit and receives an additional payout f . To prevent
bribing participants into not publishing, we choose some
bmin > bmax and d, f such that d + f > bmin, giving us
(n− t+ 1)(d+ f) > V =⇒ d > V

n−t+1 − f . In practice, we
expect f to be a fixed value.

Lemma 1. If the adversary needs to bribe n − t + 1
participants to prevent publication, then preventing publi-
cation through bribery is infeasible for a V -adversary if
(n− t+ 1)(d+ f) > V .

The approach described so far still allows for participants to
reveal unpublished outputs at an arbitrarily small cost with no
penalty. Therefore, we need to provide an additional incentive
for participants not to reveal such outputs. We can place a
bounty on unpublished outputs – that is, the valid output for
any valid input that doesn’t match any previous input seen

in the protocol.2 Then, any participant who lowers sells their
secret key for less than the bounty price risks having their
bounty claimed by someone else, leaving them with a loss.
Let W be the value to the adversary of knowing the secret
key a. If we require each participant to place their deposits
several rounds in advance, such that there are always at least
k deposits placed by each participant at any given time, and
we use the entire deposit and fee as the bounty, we get a
bounty of k(d + f), which becomes the minimum price at
which a participant will be willing to sell their secret key. Since
the adversary must recover t secrets to mount a successful
attack, we must satisfy t · k(d + f) > W . If we let keys be
refreshed every l rounds3, then, by the triangle inequality, we
have W = l · V , so t·k

l (d+ f) > V .
Lemma 2. If the adversary needs to bribe t participants to

learn the beacon output for a unpublished input, then learning
the beacon output for an unpublished input is infeasible
through bribery for a V -adversary if t·k

l (d+ f) > V .
To avoid the risk that a participant claims their own bounty

as a mechanism for a selective suppression – that is, a
participant expects an undesirable output, and therefore claims
their own bounty to back out at no cost – we only pay out
submission rewards and deposits at the next output round. In
the time between, a bounty can be claimed on that reward and
deposit, redirecting that reward and deposit to the claimant.
In this way, the output must be published for a bounty to be
claimed.

Additional considerations must be made for the costs of run-
ning an honest protocol. The cost per round to pay fees is n·f .
Considering deposits alone, the minimum participant capital
for entry is k ·d, while the maximum return on investment for
participants is then f

k·d . Since participants will have additional
setup, upkeep, and transaction fees (e.g. equipment, rent,
utilities, maintenance, patches, etc.), particularly since high
availability is required, the return on investment (ROI) must
be carefully considered and should be chosen to minimize
opportunity cost to participants while also minimizing fee
costs.

Recall that we have defined the following variables:
1) V : The anticipated maximum value or utility the adver-

sary stands to gain through dishonest behavior in one
round

2) n: The total number of participants
3) t: The threshold, i.e. the number of participants needed

to reconstruct the output
4) d: The value of the deposit each participant must place
5) f : The reward paid after each output publication to

honest participants
6) k: The number of simultaneous deposits; approximately

the number rounds in advance deposits are placed

2In order to remain secure under the weak pseudorandomness property, the
input provided should be a hash preimage of the actual input. The inability to
produce such a proof without some type of oracle access of this is immediate
from lemma 3 in section VI-B.

3specifically, l is how many rounds will pass before the keys are refreshed
by an honest submitter

7) l: The number of rounds between each key refresh
And we’ve identified the following constraints to satisfy:
1) (n− t+ 1)(d+ f) > V
2) t·k

l (d+ f) > V

3) Participant ROI = f
k·d

4) Cost to coordinator per round = n · f
Since there’s little value in greatly exceeding V, we can
assume: t·k

l = (n− t+ 1), so our threshold becomes

t =
n+ 1
k
l + 1

≈ n l
k

The total cost is more interesting in terms of V , so
Cost per round > n ·

(
V

n−t+1 − d
)

= n ·
(
V ·l
t·k − d

)
As we discussed at the end of section III, in a real world

setting, intrusions are possible. Let c be the upper bound on
the number of intrusion, then then the threshold value t is
substituted for t− c for constraint 1, and substituted for t+ c
for constraint 2.

B. Smart contract enforcement

In order to enforce the aforementioned incentives, we
propose the use of a smart contract to collect deposits, pay
rewards, and manage bounties. Our goal is that we pay
participants who comply with the protocol, and we punish
participants who do not. As long as some threshold comply
with the contract, our smart contract should ensure our security
guarantees are met. We present pseudocode for the smart
contract in appendix B.

The timing of events is as follows. First the participants
place their respective deposits to the smart contract at some
time in advance of a designated “input” block, then the
manager provides the smart contract the rewards to distribute.
When the designated block is published, participants publish
their output. After the bounty claim time has passed, the
deposit and reward are paid to the participants who published.
These events are also shown in figure 2. The first such block
is chosen as some block after the system is initialized, and all
future blocks are a fixed interval after that. That is, suppose
there is some block number b1 that is the designated first
output time, and new outputs are desired every δ blocks, then
the ith designated block occurs at block number bi = b1 + iδ.

In the case where the protocol fails, expired contracts must
result in the funds being destroyed, in order to avoid the case
where the recipient of the funds of a dead contract colludes
with a participant to reduce the disincentive. In the case where
the protocol succeeds, some penalty should still be levied, but
the penalty need not be the full forfeiture.

A cryptocurrency that supports this contract must support
computing the verification functions. For our choice of weak
VRF this involves arithmetic on large numbers under a mod-
ulus as well as bilinear map and respective group operations.
The cryptocurrency also needs to support detecting the current
block number and retrieving the hash for past blocks. This
last requirement rules out Bitcoin, but Ethereum remains as

Time
tcutoff tinput tpublish tpayouttdeposit

Deposit
paid

Input
available

Output
computed

Output
published

Participant
paid

Bounty
Collection

Bounty paid

Fig. 2. The timeline of a single round of the smart contract; rounds can be pipelined. There are 5 key times: tdeposit, the latest possible time for a participant to
pay the deposit; tcutoff, the latest possible time for a user to make a decision from the beacon output; tinput, the time when the input becomes available; tpublish,
the time by which participants must publish to receive their deposit and the reward; and tpayout, the time by which bounties must be submitted. Immediately
after tpayout, deposits are refunded and rewards are paid, to either the participant or bounty collector depending on the circumstances.

a somewhat viable choice for implementation. We discuss the
difficulties with an Ethereum implemention in section VII-B.

Note that claiming someone else’s reward is preceded by the
participant publishing their output, so there’s never a situation
where a participant would claim their own bounty to avoid
publishing their output.

VI. SECURITY

In this section, we will sketch a proof of the security of our
protocol. We break our argument into three steps. First we
briefly define what security means for our protocol, and we
consider how the security of weak VUFs imply the security of
our protocol, then we consider the security of our distributed
computation modification to Brakerski’s weak VUF, finally
we consider the security of refreshing the keys. For second
and third sections, we show that these modifications maintain
the original security properties of Brakerski’s weak VUF. The
definition for weak VUFs can be found in section IV-A.

A. Security Definitions

In this section, we very define the security goals of the
protocol as a whole. We say a random beacon RB is (V, k)-
secure if it is secure against adversaries with V bribing
power and poly(k) computational power. Let RBSK(z) be the
random beacon output for time z ∈ Z and secret key SK;
let RBiSKi

(z) be the random beacon share for participant i,
time z, and participant secret SKi. In a distributed setting,
RBSK(z) is composed of any t of n shares RBiSKi

(z),
which we denote with the combine function: RBSK(z) =
combine(O) where O is a mapping such that O : i 7→
RBiSKi

(z), |O| ≥ t. If the adversary attempts to influence
RBSK(z), then let z ∈ Z[i],4 where Re(z) is the beacon output
time, and Im(z) is the adversarial action, with Im(z) = 0
corresponding to no adversarial action.

As we outlined in on our threat model in section III, we
have the following desired properties:

1) Prediction Resistance: Predicting the output requires
compromise of at least t participants. More formally,
let C be the set of compromised participants C ⊂ [n]
and S = {SKi|i ∈ C} be their keys. Then we say

4The Gaussian Integers, which are complex numbers where both the real
and imaginary parts are integers i.e. Z[i] = {a+ b i|a, b ∈ Z}

RB has prediction resistance if for all PPT algorithms
A = (A1,A2), the following experiment succeeds with
probability at most negl(k):

SK,PK ← Gen(1k)

C, st = A
RBSK(·),RB1

SK1
(·),...,RBn

SKn
(·)

1 (PK)

S = {SKi|i ∈ C}

z, v′ = A
RBSK(·),RB1

SK1
(·),...,RBn

SKn
(·)

2 (st, PK, S)

v = RBSK(z)

The experiment succeeds when v 6= ⊥∧ v = v′, and for
all z′ accessed by oracle queries, Re(z′) < Re(z)

2) Unbiasability: Changing the output requires compro-
mise of at least t participants. More formally, let p ∈
[0, 1] be a probability and R : {0, 1}b(k) ∪ {⊥} →
{0, 1,⊥} be a predicate for which p · b(k) inputs map
to {0} and (1 − p) · b(k) inputs map to {1}, where
R(⊥) = ⊥. We say RB has unbiasability if for all PPT
algorithms A = (A1,A2), the following experiment suc-
ceeds with probability at most max(p, 1−p)+negl(k):

SK,PK ← Gen(1k)

C, z,R, b′ = A
RBSK(·),RB1

SK1
(·),...,RBn

SKn
(·)

1 (PK)

where b′ ∈ {0, 1}

S = {SKi|i ∈ C}

O = {RBiSKi
(z)|1 ≤ i ≤ n}

O′ = A
RBSK(·),RB1

SK1
(·),...,RBn

SKn
(·)

2 (PK,S,O)

Where ∀i ∈ C, i ∈ O′ ∧ ∀i /∈ C, i /∈ O′

O′′ : i 7→
{
O′i if i ∈ C
Oi if i /∈ C

v′ = combine(O′′)

bnew = R(v′)

Ooriginal = {RBiSKi
(Re(z))|1 ≤ i ≤ n}

voriginal = combine(Ooriginal)

boriginal = R(v)

The experiment succeeds when bnew = b′ ∨ (boriginal 6=
b′ ∧ v′ = ⊥), and for all z′ accessed by oracle queries,
Re(z′) < Re(z).

3) Pseudorandomness: Let rand(S) output a random
element s ∈ S. For any PPT algorithm A = (A1, A2)
given an oracle to f,Π who does not query x, the
following experiment fails with probability at most
1
2 + negl(k)

(PK,SK)← Gen(1k)

(z, st)← A
RBSK(·)
1 (PK)

y0 ← RBSK(z); y1 ← rand
(
{0, 1}b(k)

)
b← rand ({0, 1})

b′ ← A
RBSK(·)
2 (yb, st)

The experiment succeeds if b = b′, and for all z′

accessed by oracle queries, Re(z′) < Re(z).

B. Protocol security

The prediction resistance and unbiasability of our random
beacon comes primarily from the thresholding secrecy and
completeness properties of our modified weak VUF, defined
in the next section, VI-C.

Prediction resistance is evident from the thresholding
secrecy property that any group of less than t participants
cannot learn any additional information about the output or
keys, as long as |C| < t. Then, the condition |C| < t is
fulfilled by lemma 2, giving us prediction resistance.

Our analysis of unbiasability considers unbiasability from
two angles: manipulation and selective suppression. Manipula-
tion is any attack that provides a 1

poly(k) advantage in ensuring
that bnew = b′. Selective suppression is any attack that provides
a 1
poly(k) advantage in ensuring that v′ = ⊥ when boriginal 6= b′.
In order to improve the probability that bnew = b′, the

adversary needs to predict the value of bnew with non-negligible
probability, when |C| ≤ t − 1. This violates the prediction
resistance property.

In order to improve the probability that v′ = ⊥ when
boriginal 6= b′, the adversary will have to induce a ⊥. There
are two ways to do so: by changing the Im(z) value to one
that induces a ⊥, or by bribing participants to not publish.
For the former, this would require predicting the outcome
before choosing z with non-negligible probability, violating
prediction resistance. For the latter, from the thresholding
completeness property of our modified weak VUF, the ad-
versary would need |C| ≥ n − t + 1 to cause a ⊥. By
lemma 1, we can fulfill the condition that |C| < n − t + 1.
Therefore, the adversary is not able to induce a ⊥. Since both
of these approaches are mutually incompatible, the probability
of success is the maximum of the two, which provides only a
negligible advantage.

We can see that both approaches to bias attacks have at most
a negligible advantage. Because the probabilities of the success
of the two approaches are joined with an OR, any combination
of approaches can at most benefit from the summation of their
advantages, which is still a negligible advantage.

The pseudorandomness of the beacon depends on ensuring
the weak unpredictability property of the weak VUF is pre-
served when using a Bonneau beacon. The Bonneau beacon
uses a randomness extractor in their protocol; assume, under
the random oracle model, that this extractor is a random oracle.
For the sake of argument, assume the adversary can choose
the input value to the random oracle. Then, by lemma 3 below,
the beacon remains pseudorandom.

Lemma 3. If the adversary is allowed to choose between a
polynomial number of randomly chosen VUF inputs, the weak
unpredictability property of the weak VUF still holds.

Proof sketch: Let Q be the set of outputs from queries to
the random oracle, then let the adversary choose one particular
value q ∈ Q as the input for the weak VUF. If we provide the
adversary the set {fSK(q′)|q′ ∈ Q \ {q}}, then these values
become oracle queries, and this situation matches the definition
of the weak unpredictability property. Hence, an adversary
choosing among poly(k) queries to a random oracle preserves
the weak unpredictability property.

C. Distributed weak VUF

In this section, we show that relaxed completeness, relaxed
soundness, and weak unpredictability hold for our distributed
weak VUF. We also define properties of thresholding. The
properties shown in this section are largely derived from the
properties of Dodis’s VRF[13].

Since, as a whole, our distributed weak VUF has a cor-
responding weak VUF with identical inputs and outputs,
completeness and soundness clearly hold.

In order to show weak unpredictability holds for our
scheme, we show that our scheme is equivalent to a single
step of Dodis’s distributed VRF. Since that VRF has stricter
pseudorandomness properties, a PPT algorithm that predicts
our output would be able to predict Dodis’s output, violating
the standard VRF pseudorandomness property, hence also
violating the weak unpredictability property.

As a reminder, Dodis’s VRF involves creating a set of secret
keys aj for each round in his protocol. The input x is run
through a binary encoding function C, and the resulting VRF

output and proof are both gΠja
Cj(x)

j . This is performed in
rounds where g0 = g and

gj =

 g if j = 0
gj−1 if Cj(x) = 0
(gj−1)

aj if Cj(x) = 1

The computation of (gj−1)
aj is distributed in an identical

manner to our distribution of ra. If we assume there exists a
PPT algorithm to predict ra more a small fraction better than
random, then we can use that same algorithm to predict gj
from gj−1. This would violate the pseudorandomness property

of Dodis’s VRF, which is a contraction. Hence such an
algorithm cannot exist.

We additionally define the following thresholding proper-
ties:

Thresholding completeness: Let x be an input to a weak
VUF evaluation function fSK . Let SK be distributed into n
shares SK1, ..., SKn with a threshold of t. Then any subset
of size t of fSKi(x)|i ∈ [n] is sufficient to compute fSK(x)

Thresholding secrecy: Let x be an input to a weak VUF
evaluation function fSK . Let SK be distributed into n shares
SK1, ..., SKn with a threshold of t. Then any subset of size
less than t of fSKi(x)|i ∈ [n] can only compute fSK(x) with
negligible probability.

Thresholding completeness is immediate from the con-
struction of our distributed weak VUF.

Thresholding secrecy is immediate from the security of
Dodis’s VRF construction.

D. Key refreshing

In this section, we show that relaxed completeness, relaxed
soundness, and weak unpredictability hold for the distributed
weak VUF after using our key refreshing scheme.

Since this mechanism does not produce invalid keys, and
FSK of our modified weak VUF is not changed, relaxed
completeness and relaxed soundness clearly hold.

We now need to show that the weak unpredictability
property still holds. Since no weak keys exist, any state
the adversary puts the system will not introduce any new
predictive ability. However, to show weak unpredictability still
holds, we need to show that the state transition does not
improve the adversary’s predictive ability. We note that no
new information about the secret keys is gained. Everything
published by participants is computable by the adversary from
the adversary’s knowledge of the secret key adjustments. The
adversary, therefore, gains no more information about the
system. Since the adversary gains no new information and
is unable to force the system to use a weak key, the adversary
is not able to predict the output any better and the weak
unpredictability property still holds.

We also show that key reuse is not a concern after the key
is refreshed, provided the adversary does not know the key
change. Assume there is some PPT algorithm to predict ra+∆a

we denote as A
(
g, r, ga, g∆a, ra

)
, with a′ = a + ∆a and

ga
′

= ga · g∆a. Suppose have some g, gx, gy . We pick any
value c and compute

(gc)
−1

A (g, gy, gc, gx, (gy)
c
)

= (gc)
−1 · (gy)

c+x

= gxy

Which violates the computational Diffie-Hellman hardness
assumption. Hence, no such algorithm exists.

Even if the adversary contributes to a′, it is sufficient
that any one contributor not share their contribution with the
adversary to keep the adversary from predicting ra

′
.

VII. IMPLEMENTATION

We have provided a proof-of-concept implementation. This
comes in 2 parts. The first part is the beacon implemented on a
model blockchain, demonstrating output verification and pub-
lic key refreshing. The second part is a partial implementation
of the beacon in an Ethereum smart contract, demonstrating
output verification and monetary incentives. Due to limitations
in Ethereum’s pairing support, we were not able to implement
public key refreshing in the smart contract.

The model blockchain implementation has 2783 lines of
code written in Java and runs over a network. The Java im-
plementation depends on the Java Pairing-Based Cryptography
(JPBC) library, which is a Java interface for the Pairing-Based
Cryptography (PBC) written in C. [17] [18]

A. Model Blockchain

We provide a sample implementation of the full protocol
over a mock blockchain. We have broken this implementa-
tion into two parts: an event-based abstract beacon, and an
implementation on a mock blockchain.

Our abstract beacon is broken down into Participants and
Users. Where a Participant watches the blockchain to see when
they should publish the next output and waits for new secret
key changes to track and publish corresponding public key
changes to. Users watch for outputs and public key changes on
the blockchain to locally record those. Users can also submit
secret key changes, but in practice the only users authorized
to do so would likely be those also holding a Participant.

Our full implementation provides a networked implementa-
tion of the beacon, on a model blockchain. This blockchain
collects entries over a fixed time period, then broadcasts all
entries collected since the last period, simulating the process of
periodically appending to a ledger. The machine that hosts the
blockchain is programmed with behavior to validate beacon
outputs and key changes, simulating a smart contract. For each
beacon output, one participant is selected round robin to make
a key change, which entails a single participant performing the
steps outlined in section IV-B. After N rounds, a full refresh
will have occurred.

To evaluate our implementation, we set up a network on
Google Cloud Platform[19]. Our network places each par-
ticipant and the host on separate VM instances, scattered
geographically across Asia, North America, Europe, South
America, and Australia. All VMs were run on Google Cloud
Platform’s “g1-small” machines, which are stated to have
1.7GB of memory and 0.5 virtual CPUs. We ran the protocol
run until 100 beacon outputs had accumulated, at which point
we terminated the execution and collected measurements.

The results from our evaluation are shown in figure 3. We
can see that the computation time for the participants does not
vary much between the number of participants. This would
be expected, since, relative to the number of participants,
the beacon output operations are constant time complexity,
and the key refreshing amortizes to constant time complexity.
We can also see that the computation time climbs for the
host, which is again unsurprising since the time complexity

Num. of Part. Thresh. Host CPU Time Avg. Part. CPU Time (Std. Dev.) Network Data
3 2 0.22 s 0.48 s (0.006s) 2.42 kB
5 3 0.62 s 0.37 s (0.078s) 3.95 kB

10 7 1.65 s 0.52 s (0.094s) 7.84 kB

Fig. 3. The measurement results from our full protocol implementation with a simulated blockchain and smart contract. The host simulates both the blockchain
and the smart contract. The participants each simulate a single IVRB participant. The CPU times are per beacon output and per participant. CPU times do
not include sleep time and time to send and receive network communications. Network data is the sum of the data sent by all participants and the host per
beacon output. Total run time is not included since the test includes a simulated blockchain that enforces fixed block times, so most of the run time is spent
sleeping. All tests were run with 100 beacon outputs. The total cost to execute all 3 simulations was approximately USD$0.55.

to compute output values is quadratic relative to the number
of participants.

B. Ethereum smart contract

We implemented of a reduced version of our protocol in
an Ethereum smart contract. In particular, our implementation
provides the following features:

• Deposit collection and tracking
• A mechanism to compute a universal r
• Participant submission, verification and tracking
• Deposit and fee payout
• Bounty submission and payout

We also provide a sketch of public key tracking. Due to the
limited field and group operations implemented natively in
Ethereum, we were not able to implement the following

• Combined output computation
• Public key update verification and computation
• Provably secure determination of r, which should be done

by hashing onto the curve, as described by Fouque et
al.[20]

At the start of the protocol, the participants are identified
having by their Ethereum public key hard-coded into the con-
tract. Other parameters are also hard-coded into the contract,
such as the deposit amount, time interval between outputs,
etc. Without public key update verification, public keys would
need to be hard-coded as well. However, with public key
update verification, public keys could be initialized to zero,
and updated immediately.

In order to facilitate zk-SNARKs, Ethereum has natively
implemented some finite field operations and group operations
on the Barreto-Naerhig curves[21][22]. Let G1,G2,GT be the
elliptic curve groups that comprise the Barreto-Naerhig curves.
Then the implemented operations are:

1) Scalar exponentiation under modulo: be mod m for
large integer inputs b, e,m

2) Addition in G1: X + Y for inputs X,Y ∈ G1

3) Scalar multiplication in G1: aX for inputs a ∈ Z2256−1

and X ∈ G1

4) Pairing product check:
k∏
i=0

e(ai, bi) = e(P1, P2) for

fixed generators P1, P2, and inputs a0, a1, ..., ak ∈ G1,
b0, b1, ..., bk ∈ G2

In order to implement our full protocol, we would addition-
ally need

Test case Cost: Gas (USD)
Contract initialization 3,985,409 ($2.39)

Submit an output (keccak256) 497,421 ($0.30)
Claiming a bounty (keccak256) 891,901 ($0.54)

Submit an output (HMAC) 510,917 ($0.31)
Claiming a bounty (HMAC) 904,690 ($0.54)

Fig. 4. Gas cost for each test. “keccak256” vs “HMAC” refers to the extractor
function used to compute r. The contract initialization only needs to be run
once and applies globally. Submitting outputs will occur once per participant
per round in normal operation. Claiming bounties is not expected to happen
frequently in normal operation. USD estimates are rough estimates only, and
are subject to significant change as the cost of Gas and Ether change.

1) Scalar addition under modulo: a + b mod m for large
integer inputs a, b,m

2) Scalar multiplication under modulo: ab mod m for
large integer inputs a, b,m

3) Addition in G2: X + Y for inputs X,Y ∈ G2

4) Scalar multiplication in G2: aX for inputs a ∈ Z2256−1

and X ∈ G2

Ethereum contracts are limited in their computation time
through a resource called “Gas”. In order to ensure our system
will stay within reasonable gas consumption, we created a
method to test the output submission functionality and a
method to test the bounty claiming functionality. We show
the Gas usage of each of those tests in Figure VII-B. For
reference, the global gas limit, or the sum total of gas that can
be used for a block, across all smart contracts, is 8 million
Gas, as of the writing of this paper[23][21]. Additionally, as
of the writing of this paper, the expected cost of one Gas is 5
Gwei[23], which translates to USD$6× 10−7[24].

VIII. PAYING FOR FEES

While we have addressed economic incentives for partici-
pants, we have not discussed how to raise the funds to pay
the fees to participants. In the simplest situation, a publicly-
minded, well funded actor, such as a government, agrees to
cover the fees. Otherwise money will have to be raised some-
how. To do this, we propose taking random beacons slightly
outside the realm of a public good. By definition, public
goods are both non-rivalrous, meaning that one party’s use
does not diminish another party’s utility; and non-excludable,
meaning that it is not possible to prevent a particular party
from using the good[8]. We propose an extension for making
a beacon excludable, which we call “proof withholding”; and

we propose an extension for the case where a beacon may be
rivalrous, which we call “output withholding”

A. Proof Withholding

In this extension, the beacon value is published with no
associated proof. In order to verify the output, a user must pay
to receive a proof of the output. An interactive proof would
need to be performed with each participant. A non-interactive
proof would allow the user to share the proof, which would
make the good public.

This is trivially implemented by switching to a field where
DDH is hard, and using a discrete logarithm proof in zero
knowledge[25].

The difficulties here are twofold:
1) Avoiding freeloading
2) Ensure those who want to pay can pay
For the first, we are concerned about the case where a group

collaboratively creates the challenges to a zero-knowledge
proof, enabling them to share the proof among themselves.
We address the first by requiring the verifier commit to their
challenge bit before the beginning of each round, and reveal
their commit after the round. This guarantees the verifier knew
the challenge bit, and therefore could have colluded with the
prover. This makes the proof only useful to the verifier.

For the second, while we do want to exclude those who
do not pay, we also do not wish to exclude those who are
willing to pay. While, ideally, most of the verification should
be solved off-chain, it may be the case that a malicious
participant chooses not to engage in the interactive proof with a
verifier. To solve this, each participant must have have a smart
contract over which a single step of the zero knowledge proof
is performed, which includes the aforementioned challenge
commitment scheme. If the participant answers the challenge,
the verifier will refund the participant’s gas costs as well as pay
a fixed fee, through a deposit placed when the verifier starts
the challenge. Should a participant fail to answer a challenge,
a deposit will be forfeit and will need to be replaced if the
participant wishes to keep participating in the beacon protocol.

B. Output Withholding

We additionally propose an extension wherein the beacon
output is withheld, but a proof is published that the recipient
can recover the beacon output (proof of receipt). To avoid
the proof itself from being used as a random beacon, every
participant must be able to manipulate the proof.

To accomplish this, we start with a standard beacon setup.
The recipient chooses some bijs for each participant i and
a small number of js, and publishes gbij for each i, j. For
participant i, the recipient secretly shares each bij for each j.
During beacon computation, each participant chooses a linear
combination of js:

li =
∑
j

αijbik

and computes
FSKi

= raili

The participant publishes (αi1, αi2, ...) and gaili . Since the
recipient knows the bis, they can recover l and compute li−1

to recover rai . A third party can verify the recipient’s ability
to recover the value by computing

gli = g
∑

j αijbik =
∏
j

gαijbij =
∏
j

(
gbij
)αij

and verifying both (g, gai , gli , gaili) and (g, gaili , r, raili)
form valid DDH tuples. A participant can manipulate the
public output by choosing a different combination of αs, while
still leaving both the value of the beacon output unchanged.

Reconstruction of a single system proof is not possible,
but it is also not necessary since each share is individually
verifiable.

C. Output Withholding Security
In this section, we discuss the security of output with-

holding, introduce and modify some security properties, and
demonstrate that those properties hold. For simplicity, we
discuss the security in a non-distributed setting, but the results
from section VI-C can be used to generalize these results to
a distributed setting.

Strictly speaking, the relaxed soundness property does not
hold for this scheme. This is because any combination of αjs
has a corresponding proof. Instead, we let every combination
of (α1, α2, ...) be a distinct VUF. Clearly, relaxed complete-
ness holds for our scheme. We can see weak unpredictability
holds after output withholding by observing that each linear
combination is equivalent to a distinct key refreshing.

We need to modify our notion of relaxed soundness, in-
stead showing that each x corresponds to a single FSK(x), re-
gardless of ~α. We need a property, output withholding, which
states the withheld output should not be recoverable from
the proof or public output, except with negligible probability.
Finally, we need a property that guarantees the participant is
able to affect the output, which we will call engineerability.

More formally, a output withholding weak VUF has the
following functions:

1)
(
SK,PK, ~SK ′ = {SK ′0...SK ′m} ,
~PK ′ = {PK ′0...PK ′m}

)
← Gen(1k)

2) v′ ← F ′ ~SK′(x, ~α)
3) π′ ← Π′ ~SK′(x, ~α)

4) v, π ← Recover(~SK ′, x, ~α, v′, π′)
5) V (PK, x, v, π)
6) V ′(PK, ~PK ′, x, ~α, v′, π′)

~α is an array of length m, with elements of size c(k). The
values are chosen in any manner when F ′ is called.

With the following properties:
1) Relaxed Completeness: If

(
SK,PK, ~SK ′, ~PK ′

)
=

Gen(1k) then for all x, ~α, v′ = F ′ ~SK′(x, ~α), it holds
that V (PK,PK, x,Recover(~SK ′, x, ~α, v′, π′)) = True
and V ′(PK, ~PK ′, x, ~α, v′, π′) = True, expect with
probability negl(k)

2) Relaxed Soundness: If
(
SK,PK, ~SK ′, ~PK ′

)
=

Gen(1k), then there exist no values x, ~α1, ~α2

such that Recover(~SK ′, x, ~α1, F
′
~SK′(x, ~α1)) 6=

Recover(~SK ′, x, ~α2, F
′
~SK′(x, ~α2)), expect with

probability negl(k)
3) output withholding: For all PPT algorithms A given

oracle access to F, F ′

Pr

w = v

∣∣∣∣∣∣∣∣∣
SK,PK, ~SK ′, ~PK ′ ← Gen(1k)
x← {0, 1}a(k), ~α← {0, 1}c(k)×m

v ← Recover ~SK′

(
(F ′
SK, ~SK′(x, ~α)

)
w ← F

4) Engineerability: Let p ∈ [0, 1] be a probability and

R : {0, 1}b(k) → {0, 1} be a predicate for which p · b(k)
inputs map to {0} and (1− p) · b(k) inputs map to {1}.
There exists a PPT algorithm B such that for all PPT
algorithms A the following experiment succeeds with
probability at most min (p, 1− p)poly(k)

+ negl(k)

(SK,PK, ~SK ′, ~PK ′)← Gen(1k)

(x,R, b)← A(SK,PK, ~SK ′, ~PK ′)

~α = BR(·)(SK,PK, ~SK ′, ~PK ′, x, b)

v′ = F ′
SK, ~SK′(x, ~α)

b′ = R(v′)

The experiment succeeds if b 6= b′

5) Weak pseudorandomness: Let rand(S) output a
random element s ∈ S. For any PPT algorithm
A = (A1, A2) given an oracle to f,Π who does
not query (x, ∗), the following experiment fails with
probability at most 1

2 + negl(k)

(SK,PK, ~SK ′, ~PK ′)← Gen(1k)

x← rand
(
{0, 1}a(k)

)
(~α, st)← A

F ′
SK, ~SK′ (·,·),Π

′
SK, ~SK′ (·,·)

1 (x)

y0 ← F ′
SK, ~SK′(x, ~α); y1 ← rand

(
{0, 1}b(k)

)
b← rand ({0, 1})

b′ ← A
F ′

SK, ~SK′ (·,·),Π
′
SK, ~SK′

2 (x, yb, st)

The experiment succeeds if b = b′

Before moving onto the proofs, we want to motivate the
engineerability property. This property is critical for ensuring
no adversary can construct a “pirate” random beacon from the
value-withheld beacon. That is, we desire that any randomness
extracted from the public portion of a value-withheld IVRB
is no better than the Bonneau et al. random beacon it was
constructed from, with the idea that any random beacon
construction from the public portion of our value-withheld
IVRB may as well be built on the Bonneau et al. random
beacon.

We note that in the definition for engineerability, the
visibility of R to B might appear to be a limitation, since
a real adversary might hide R but make a commitment to
it. However, any such adversary could choose a participant
to secretly reveal R to, and therefore choose a favorable
~α. In the distributed setting, the adversary would need only
collude with a single participant to manipulate the output. This
violates manipulation resistance, giving a weaker random
beacon than our complete beacon, which requires collusion
with at least t participants to manipulate the output. This
means any random beacon constructed from a predicate on
the public portion of our value withheld beacon can be
manipulated for minimal cost. Therefore, the Bonneau et al.
random beacon is a at least as secure a choice as a random
beacon constructed from a predicate on the public portion of
our value-withholding IVRB.

Correctness is immediate from the construction. Sound-
ness and pseudorandomness are immediate since they reduce
to the corresponding wVUF properties.

Now we sketch the proof of engineerability. Informally, let
B be a random guess and check algorithm. More concretely,
B is the following algorithm:

loop poly(k) iterations
~α← random

(
{0, 1}c(k)×m)

v′ = F ′
SK, ~SK′(x, ~α)

b′ = R(v′)
if b = b′ then

return ~α
end if

end loop
return ⊥

To show engineerability, we will show that for any A, B
terminates in polynomial time with high probability. For the
sake of argument, suppose we used a random oracle H in place
of F ′. Because the output of H(x, ~α) is random, then b′ is 0
with probability p and 1 with probability (1−p). Observe that
for a fixed ~α, the functions (Gen, F ′, V ′) constitute a wVUF.
Therefore, if the adversary has not evaluated F ′

SK, ~SK′(x, ~α),
the result is indistinguishable from H . Because the adversary
runs in poly(k) time and there are at least 2k values for alpha,
the probability the adversary has observed a particular output
is poly(k)

2k , so in each loop of B, b = b′ with probability at least
min(p, 1−p)− poly(k)

2k . On a success, B outputs ~α. On a failure,
B repeats this process. After poly(k) attempts, B fails each

attempt with probability
(

min(p, 1− p)− poly(k)
2k

)poly(k)

. Af-
ter expanding this expression, there will be one term that is
min(p, 1 − p)poly(k), and poly(k) terms that are of the form

±
(
poly(k)

2k

)poly(k)

= ±negl(k), giving us

Pr[b 6= b′]

= min(p, 1−p)poly(k) +poly(k) ·negl(k)−poly(k) ·negl(k)

= min(p, 1− p)poly(k) + negl(k)− negl(k)

≤ min(p, 1− p)poly(k) + negl(k)

hence the claim.
Next, we sketch the proof of output withholding. To show

this, we first define 3 PPT algorithms:

A1

(
g, ga,

{
gb1 , ..., gbm

}
, {α1...αm} , gal, r, rl, ral

)
= ra

where l =
∑m
i=1 αibi

A2

(
g, ga, gb, gab, r, rab

)
= ra

A3

(
g, ga, gb, gab, gc, gabc

)
= gac

Observe that algorithm A1 is the algorithm that models the
adversary recovering the output from the proof.

For any chosen set of αis and any set {b1, ...bm−1}, A2 can
be efficiently computed with A1. This is done by choosing
{α1, ..., αm} and {b1, ..., bm−1}, and then computing gbm .

If we let G1×G2 → GT be a bilinear mapping, then r ∈ G1,
g ∈ G2, then G1 and G2 are of the same order, so a mapping
from from G1 to G2 exists, and A3 can be computed with
A2.5

Therefore, showing that A3 cannot exist suffices to show
A1 does not exist under the above assumptions. To show this,
we need only notice this algorithm would allow an adver-
sary to solve the Generalized Computational Diffie-Hellman
assumption, as defined by Dodis. [13] The definition of the
assumption, which follows Dodis[13] closely, is as follows:

Let G be a cyclic group of prime order q with generator
g. Let L be some integer, and a1...aL be elements of Zq . Let
[L] = {1...L}, and given I ⊆ [L], let aI =

∏
i∈I aimodq.

Let G(I) = gaI . We allow the adversary oracle access to G
and we let I1...It be the subsets the adversary accessed with
G. We define a predicate R(J, I1, ..., It) which decides if the
oracle accesses are “legal”. We call any predicate is false if
J ∈ {I1...IT } “non-trivial”. The generalized computational
Diffie-Hellman assumption is then as follows:

We say a group G follows the generalized computational
Diffie-Hellman assumption of order L = L(k) relative to
a non-trivial predicate R if for any PPT adversary B =
{B} who has called oracle G on subsets I1...It satisfying
R(J, I1, ..., It), then:

Pr

y = y′

∣∣∣∣∣∣∣∣∣
(G, q, g)← Setup(1k);

(a1, ..., aL)← Zq;

(J, y′)← BG(·)(G, q);
y = G(J);

 ≤ negl(k)

For a weaker and more plausible assumption, we choose
L = 3 and define R such that it is true if and only if J = {a, c}
and {I1, ..., It} = {{a}, {b}, {c}, {ab}, {abc}}. Clearly, we
can use A3 to solve this problem, which is a contradiction.
Hence, no PPT algorithm satisfying A1 exists.

5Note that in practice such mappings are not always known, nor are they
always efficient[26]. Regardless, we may assume the adversary has efficient
oracle access to such a mapping, since any adversary B that has such a
mapping can simulate an adversary B′ who does not have such a mapping,
so if no B exists, then no B′ exists.

IX. CONCLUSIONS

We have proposed a model for producing public-
randomness that is readily configurable to handle a broad
range of threats. Our protocol guarantees unbiasability, un-
predictability, verifiability, and the ability to audit most steps.
Our protocol is designed with an incentive structure that,
when correctly tuned, provides no economic incentive for a
participant to be dishonest and ensures bribery is too expensive
for adversaries. Unlike many previous protocols, there is never
a single actor who can affect the outcome. We protect against
biasing and prediction attacks with a protocol that depends
on a combination of economic and computational security
parameters.

Our work has some limitations that need to be considered
carefully before adoption. Paying the participant fees, trans-
action fees, and other costs could be very expensive. Our fee
structure is also linear in cost relative to security – a super-
linear incentive structure would better scale to high powered
adversaries. In our analysis, we have primarily considered
Ethereum as a candidate cryptocurrency for implementation,
but as we discussed in section VII-B, Ethereum has limitations
that hinder our ability to fully implement our protocol. Other
cryptocurrencies or future version of Ethereum may prove
more effective.

Future work could further refine economic incentives
to provide more specific recommendations for each value
n, t, k, d, f , or explore the possibility for stronger incentives at
a lower cost. Future work could also adapt our method for use
with a standard VRF, rather than a weak VRF, for improved
security. One limitation we have is that the proof of a withheld
value can be shared with third parties, so once a withheld value
is shared with a dishonest party, it can be freely distributed.
A mechanism to verify a withheld value in zero-knowledge
would be valuable to ensure withheld beacon outputs cannot
be freely distributed, but simply transforming to a space where
DDH is hard would lose the proof of receipt.

ACKNOWLEDGMENT

Acknowledgements removed for review.

REFERENCES

[1] R. P. et al, “Nist randomness beacon,” 2011.
[2] J. Clark and U. Hengartner, “On the use of financial data as a random

beacon.” EVT/WOTE, vol. 89, 2010.
[3] J. A. Halderman and B. Waters, “Harvesting verifiable challenges

from oblivious online sources,” in Proceedings of the 14th ACM
Conference on Computer and Communications Security, ser. CCS ’07.
New York, NY, USA: ACM, 2007, pp. 330–341. [Online]. Available:
http://doi.acm.org/10.1145/1315245.1315287

[4] J. Bonneau, J. Clark, and S. Goldfeder, “On bitcoin as a public
randomness source.” IACR Cryptology ePrint Archive, vol. 2015, p.
1015, 2015.

[5] C. Pierrot and B. Wesolowski, “Malleability of the blockchain’s entropy,”
Cryptography and Communications, vol. 10, no. 1, pp. 211–233, 2018.

[6] I. Bentov, A. Gabizon, and D. Zuckerman, “Bitcoin beacon,” arXiv
preprint arXiv:1605.04559, 2016.

[7] D. Boneh, J. Bonneau, B. Bünz, and B. Fisch, “Verifiable delay
functions,” in Annual International Cryptology Conference. Springer,
2018, pp. 757–788.

[8] B. Bünz, S. Goldfeder, and J. Bonneau, “Proofs-of-delay and random-
ness beacons in ethereum,” IEEE Security and Privacy on the blockchain
(IEEE S&B), 2017.

[9] E. Syta, P. Jovanovic, E. K. Kogias, N. Gailly, L. Gasser, I. Khoffi, M. J.
Fischer, and B. Ford, “Scalable bias-resistant distributed randomness,”
in Security and Privacy (SP), 2017 IEEE Symposium on. Ieee, 2017,
pp. 444–460.

[10] D. Boneh, B. Lynn, and H. Shacham, “Short signatures from the weil
pairing,” in International Conference on the Theory and Application of
Cryptology and Information Security. Springer, 2001, pp. 514–532.

[11] T. Hanke, M. Movahedi, and D. Williams, “Dfinity technology overview
series, consensus system,” arXiv preprint arXiv:1805.04548, 2018.

[12] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich, “Algorand:
Scaling byzantine agreements for cryptocurrencies,” in Proceedings of
the 26th Symposium on Operating Systems Principles. ACM, 2017,
pp. 51–68.

[13] Y. Dodis, “Efficient construction of (distributed) verifiable random
functions,” in Public Key Cryptography, vol. 2567. Springer, 2003,
pp. 1–17.

[14] S. Micali, M. Rabin, and S. Vadhan, “Verifiable random functions,” in
Foundations of Computer Science, 1999. 40th Annual Symposium on.
IEEE, 1999, pp. 120–130.

[15] A. Lysyanskaya, “Unique signatures and verifiable random functions
from the dh-ddh separation,” in Annual International Cryptology Con-
ference. Springer, 2002, pp. 597–612.

[16] Z. Brakerski, S. Goldwasser, G. N. Rothblum, and V. Vaikuntanathan,
“Weak verifiable random functions.” in TCC, vol. 5444. Springer, 2009,
pp. 558–576.

[17] A. De Caro and V. Iovino, “jpbc: Java pairing based cryptography,”
in Proceedings of the 16th IEEE Symposium on Computers
and Communications, ISCC 2011. Kerkyra, Corfu, Greece, June
28 - July 1: IEEE, 2011, pp. 850–855. [Online]. Available:
\url{http://gas.dia.unisa.it/projects/jpbc/}

[18] B. Lynn, “On the implementation of pairing-based cryptosystems,” Ph.D.
dissertation, Stanford University Stanford, California, 2007.

[19] Google. Google cloud platform. [Online]. Available: https://cloud.
google.com/

[20] P.-A. Fouque and M. Tibouchi, “Indifferentiable hashing to barreto–
naehrig curves,” in International Conference on Cryptology and Infor-
mation Security in Latin America. Springer, 2012, pp. 1–17.

[21] G. Wood, “Ethereum: A secure decentralised generalised transaction
ledger,” Ethereum project yellow paper, vol. 151, pp. 1–32, 2014.

[22] P. S. Barreto and M. Naehrig, “Pairing-friendly elliptic curves of prime
order,” in International Workshop on Selected Areas in Cryptography.
Springer, 2005, pp. 319–331.

[23] Ethereum network status. [Online]. Available: https://ethstats.net/
[24] Cryps.info usd to gwei. [Online]. Available: https://www.cryps.info/en/

USD to Gwei/
[25] R. Cramer, I. Damgård, and P. MacKenzie, “Efficient zero-knowledge

proofs of knowledge without intractability assumptions,” in International
Workshop on Public Key Cryptography. Springer, 2000, pp. 354–372.

[26] S. D. Galbraith, K. G. Paterson, and N. P. Smart, “Pairings for cryptogra-
phers,” Discrete Applied Mathematics, vol. 156, no. 16, pp. 3113–3121,
2008.

APPENDIX

A. Notation Guide

In order to mitigate confusion regarding the notation, we
have assembled a list of notation in our paper. This list is
not comprehensive, but we have included the most important
symbols and their meanings. In most cases, if a symbol cannot
be found in this list, it was only used in one section. Note
that a handful of symbols have different meanings in different
contexts, e.g. V is both the verifier algorithm in the context
of VRFs and the utility to the adversary in the context of the
incentive structure.

1) Security parameters:
Symbol Meaning
k The computational security parameter
V The monetary security parameter
poly(k) Any function which can be expressed as less

than or equal to a positive polynomial of k
negl(k) Any function which is negligibly small in

k, specifically for every positive polynomial
poly(k):

negl(k) <
1

poly(k)

2) VRFs, general:
Symbol Meaning Source
Gen Key generation/setup algorithm II
Π Prover algorithm: publishes a

proof
II

V Verifier Algorithm: Verifies a
proof

II

f Evaluator algorithm: Publishes the
output of the VRF

II

SK The secret key II
PK The public key II
x The (public) function input II
π The proof: π ← ΠSK(x) II
v The VRF output: v ← fSK(x) II

3) VRFs and bilinear mappings:
Symbol Meaning Source
G1,
G2,
GT

Groups that together have an asso-
ciated bilinear mapping

IV-A

e
The bilinear mapping:

e : G1 ×G2 → GT such that
e(ga, gb) = ab · e(g, g)

IV-A

g Generator of G1 IV-A
r Generator of G2, depends on x as

r = hash(x)
IV-A

a Secret key; i.e. SK = a IV-A
Si In a distributed VRF, for arbitrary

symbol S: S with regards to par-
ticipant i

IV-A

4) Key Refreshing:
Symbol Meaning Source
c The submitting party for a key

refresh
IV-B

C The number of key refresh submit-
ting parties over a given interval

IV-B

bc The secret change c is making to
the secret key a

IV-B

pc(x) The secret polynomial c will use
to distribute bc in parts

IV-B

5) Beacon output withholding:
Symbol Meaning Source
bij jth shared secret between partici-

pant i and the designated recipient
VIII-B

αij The public weighting of the jth
secret for participant i. Chosen by
participant i.

VIII-B

li The linear combination that ob-
scures the output

VIII-B

B. Sample Contract Pseudocode

Here, we present pseudocode for the smart contract in
section V-B. The smart contract should follow the following
procedure for submitting an output:

function SUBMIT(i, π)
Check pi has paid the deposit
PK ← Public key of pi
b← block number of designated block
y ← hash of block b
ε← number of blocks before expiration
r ∈ G1, chosen with y
if current block ≥ b+ ε then

Handle expired deposit
else if submitter = pi ∧ Verify(PK, r, π) then

Record π1

Schedule payment to pi
end if

end function
The smart contract should follow the following procedure

for claiming a bounty:
function CLAIMBOUNTY(i, x, π)

Check pi has paid the deposit
PK ← Public key of pi
s← block number of scheduled payout
y ← hash of x
r ∈ G1, chosen with y
if currentBlock < s ∧ Output was submitted

∧ Verify(PK, r, π) ∧ r has not been observed before then
Record π1

Redirect payment to submitter
end if

end function
Optionally, the key changes can be tracked as well.

The leader of a public key change will call the following
procedure on the smart contract to declare intention to propose
a key change:

function PROPOSEPKCHANGE(∆PK)
Choose id as a nonce
Save ∆PKid = ∆PK return id

end function
When a participant receives a secret key change, they then
submit the change in the public key through the smart contract,
as follows:

function SUBMITPKCHANGE(i, id,∆PK)
Let id be a nonce
Save ∆PKi,id = ∆PK
if Length of ∆PK∗,id = n then

Interpolate ∆PK ′ from ∆PK∗,id
if ∆PK = ∆PK ′ then

Accept PK Change id
else

Reject PK Change id
end if

end if
end function

